

RACKWARE INC.

SWIFT - Prerequisites & Installation Guide

Version 1.3.17

1 | P a g e

Contents
Preparing for the SWIFT installation ... 2

SWIFT Server Storage Requirements .. 2

Partition Free Space Requirements .. 2

SWIFT Server DR/Backup Storage Requirements .. 2

Kernel Package Install .. 3

SWIFT port usage .. 4

Kubernetes Discover .. 4

Kubernetes Configure .. 4

Kubernetes Sync .. 4

OpenShift Discover .. 5

OpenShift Configure .. 5

OpenShift Sync .. 5

Image Registry Discover.. 6

Image Registry Configure .. 6

Image Registry Sync .. 7

DR Policy Operations .. 7

Doing SWIFT install or upgrade.. 8

Fresh install .. 8

Upgrade .. 11

Creating cluster credentials for SWIFT use ... 12

Adding local Kubernetes cluster service-account for SWIFT use ... 12

Adding Oracle Cloud Infrastructure (OCI) user for SWIFT use ... 13

Adding Google GCP service-account for SWIFT use ... 22

Adding Amazon AWS user for SWIFT use ... 32

Adding Azure AAD application for SWIFT use .. 38

Adding IBM cloud user for SWIFT use ... 50

Adding OpenShift cluster service-account for SWIFT use .. 56

2 | P a g e

Preparing for the SWIFT installation
The SWIFT is a container orchestration, backup, and disaster recovery (DR) product. It works on top of

your existing container platforms like Kubernetes and OpenShift for replications, DR, and backup. You

will need the below resources before you start the SWIFT installation:

1. A 64-bit Centos/RedHat 7.x/8.x x86 host*

2. Minimum 3GB free space**

3. 8GB or more RAM

4. Two or more (V)CPUs

5. Internet connectivity on the host (yum needs to be working with EPEL repo enabled)

Once the SWIFT server is ready, subsequent sections point on any other configuration steps that need

to be done before actual SWIFT package installation.

*This is where SWIFT will be installed, and it can be a VM or a physical server. CentOS Stream is also supported.

**For detailed partition space requirements on the SWIFT server, see the next section. If you plan to do backups along with

DR, then you will need additional storage during SWIFT operations. The extra storage need not be ready while installing

the SWIFT and it can be added later.

SWIFT Server Storage Requirements

Partition Free Space Requirements
SWIFT installation requires below partitions or paths to have the mentioned minimum free space. If the

required minimum free space doesn’t exist for one or more paths below, then the installation will fail

with an error.

While the required minimum free space for below partitions/paths will let the installation continue, we

suggest you provision partitions such way that the recommended free space (from the third column

below) for each partition/path can be achieved during installation to make sure of smooth functioning

of the solution in the longer run.

Partition or path Required minimum free space (GB) Recommended free space (GB)

/opt 3 GB 50 GB

/tmp 3 GB 10 GB

/var/log 3 GB 10 GB

SWIFT Server DR/Backup Storage Requirements
If you are using SWIFT for backup or Disaster Recovery (DR) use cases, then apart from free space for

the above partition/paths on the SWIFT server, you will also require one or more block devices attached

to the SWIFT server that it will use for backup of source applications’ data/volumes. Recommended

free block storage that you should attach to the SWIFT server is same as total of your source

clusters’/applications’ volume sizes. For example, if you plan to backup three clusters with SWIFT that

are running 10 applications where applications are using total Kubernetes volumes of 3TB in size, then

you need to attach 3TB worth of block storage volumes to SWIFT server. The attached volumes can be

of any size and in any number, just they need to be 3TB in total in the example scenario.

3 | P a g e

Please refer to SWIFT Operations Guide later to know how to configure attached block storage/volumes

inside SWIFT dashboard.

Note that you can optionally attach these backup/DR storage block volumes to SWIFT server later and

they are not required to complete the installation of the SWIFT software.

Kernel Package Install
SWIFT installation requires ‘kernel-devel’ package installation on CentOS/RHEL OS. Later it is used

by the SWIFT installer to build and deploy the ZFS storage modules on the server.

For every running/available kernel, there is a matching kernel-devel package available in the yum repo.

Run the following command to install the kernel-devel package for the running kernel.

yum install kernel-devel-$(uname -r) -y

If the above step fails on missing required kernel-devel package, then you must upgrade to the latest

available kernel version, reboot the server, and then install the latest kernel-devel package.

yum upgrade kernel

reboot

yum install kernel-devel -y

After this, the kernel running on the server will have the equivalent kernel-devel package installed on

the server.

4 | P a g e

SWIFT port usage
Various operations are supported for the SWIFT managed container platform. The required network

ports will change depending on the type of the container platform and the type of operation performed.

The next section highlights port usage per platform and operation type.

If there is any intermediate firewall between the SWIFT server and your remote container platform, then

these below ports also need to be opened in the intermediate firewall.

Kubernetes Discover
Port Number

(Default)

Direction Can it be changed? Purpose

<Kubernetes-API-

Server-IP>:443

SWIFT to cluster Yes (specify during

discover and change from

configure operation for

the cluster)

Talk to API service

Kubernetes Configure
Port Number

(Default)

Direction Can it be changed? Purpose

<Kubernetes-API-

Server-IP>:443

SWIFT to cluster Yes (specify during

discover and change from

configure operation for

the cluster)

Talk to API service

Kubernetes Sync
Port Number

(Default)

Direction Can it be changed? Purpose

<Kubernetes-API-

Server-IP>:443

SWIFT to cluster

Yes (specify during

discover and change from

configure operation for

the cluster)

Talk to API service

<TRAI-Service-

IP>:<port-1>

[Default port-range is

typically: 32000-

34000)

SWIFT to cluster

Yes (specify during sync

else auto picked)

Connect to transient sync

staging POD/service

within the cluster over

HTTPS (Management

port)

<TRAI-Service-

IP>:<port-2>

[Default port-range is

typically: 32000-

34000)

SWIFT to cluster

Yes (specify during sync

else auto picked)

Pull/push data from/to

transient sync staging

POD/service within the

cluster over an encrypted

tunnel

(Data port)

SWIFT sync run will typically use two unique ports from the cluster’s service port range on both sides

of clusters. If you do sync on a namespace basis and the selected namespace has more than one region

5 | P a g e

or zone set for persistent volumes on the source cluster side, then SWIFT will run its transient TRAI-

Pod for each region/zone. In such cases, you will need 2xTRAI-Pod number of ports per sync. E.g., if

your synced source namespace has two regions or zones for persistent volumes and you are syncing the

entire namespace as part of a sync run, then the sync will deploy two TRAI-Pods (one for each region

or zone of source namespace) and so the sync will need 2x2=4 ports from the source cluster’s service

port range. These ports can be fixed or can be auto picked by SWIFT. In all cases, SWIFT will always

need only two ports per sync run for the target or DR cluster.

Note that any transient TRAI service/Pod ports, either auto picked by SWIFT or specified manually,

need to be opened in all intermediate firewalls between the SWIFT server and your cluster. If you want

SWIFT to auto pick required ports from the service port range of the cluster, then it is recommended

that you whitelist the entire cluster service port range in all intermediate firewalls between the SWIFT

server and your cluster.

The <TRAI-Service-IP> can be any of the supported IP types for the cluster services (E.g., ClusterIP,

NodePort, LoadBalancer, etc.) and can be optionally specified during the sync.

Depending on the selected TRAI service type, sync will default to auto picked IP for its transient TRAI

Kubernetes Service. If you employ NodePort service type for SWIFT’s transient TRAI service, then you

need to open required sync ports against all cluster node IPs (Also known as NodePort IPs).

OpenShift Discover
Port Number

(Default)

Direction Can it be changed? Purpose

<OpenShift-API-

Server-IP>:443

SWIFT to cluster Yes (specify during

discover and change from

configure operation for

the cluster)

Talk to API service

OpenShift Configure
Port Number

(Default)

Direction Can it be changed? Purpose

<OpenShift-API-

Server-IP>:443

SWIFT to cluster Yes (specify during

discover and change from

configure operation for

the cluster)

Talk to API service

OpenShift Sync
Port Number

(Default)

Direction Can it be changed? Purpose

<OpenShift-API-

Server-IP>:443

SWIFT to cluster

Yes (specify during

discover and change from

configure operation for

the cluster)

Talk to API service

6 | P a g e

<TRAI-Service-

IP>:<port-1>

[Default port-range is

typically: 32000-

34000)

SWIFT to cluster

Yes (specify during sync

else auto picked)

Connect to transient sync

staging POD/service

within the cluster over

HTTPS (Management

port)

<TRAI-Service-

IP>:<port-2>

[Default port-range is

typically: 32000-

34000)

SWIFT to cluster

Yes (specify during sync

else auto picked)

Pull/push data from/to

transient sync staging

POD/service within the

cluster over an encrypted

tunnel

(Data port)

SWIFT sync run will typically use two unique ports from the cluster’s service port range on both sides

of clusters. If you do sync on a namespace basis and the selected namespace has more than one region

or zone set for persistent volumes on the source cluster side, then SWIFT will run its transient TRAI-

Pod for each region/zone. In such cases, you will need 2xTRAI-Pod number of ports per sync. E.g., if

your synced source namespace has two regions or zones for persistent volumes and you are syncing the

entire namespace as part of a sync run, then the sync will deploy two TRAI-Pods (one for each region

or zone of source namespace) and so the sync will need 2x2=4 ports from the source cluster’s service

port range. These ports can be fixed or can be auto picked by SWIFT. In all cases, SWIFT will always

need only two ports per sync run for the target or DR cluster.

Note that any transient TRAI service/Pod ports, either auto picked by SWIFT or specified manually,

need to be opened in all intermediate firewalls between the SWIFT server and your cluster. If you want

SWIFT to auto pick required ports from the service port range of the cluster, then it is recommended

that you whitelist the entire cluster service port range in all intermediate firewalls between the SWIFT

server and your cluster. In all cases, SWIFT will always need only two ports per sync run for the target

or DR cluster.

The <TRAI-Service-IP> can be any of the supported IP types for the cluster services (E.g., ClusterIP,

NodePort, LoadBalancer, etc.) and can be optionally specified during the sync.

Depending on the selected TRAI service type, sync will default to auto picked IP for its transient TRAI

OpenShift Service. If you employ NodePort service type for SWIFT’s transient TRAI service, then you

need to open required sync ports against all cluster node IPs (Also known as NodePort IPs).

Image Registry Discover
Port Number

(Default)

Direction Can it be changed? Purpose

<Container-Image-

Registry-API-Server-

IP>:443

SWIFT to API

server

No Talk to API service

Image Registry Configure
Port Number

(Default)

Direction Can it be changed? Purpose

7 | P a g e

<Container-Image-

Registry-API-Server-

IP>:443

SWIFT to API

server

No Talk to API service

Image Registry Sync
Port Number

(Default)

Direction Can it be changed? Purpose

<Container-Image-

Registry-API-Server-

IP>:443

SWIFT to

Container Image

Registry API

server

No Talk to Container Image

Registry API service

The above ports for Image Registry sync are only required if you plan to migrate or set up Disaster

Recovery (DR) for your Container Image Registries with SWIFT.

DR Policy Operations
The port usage for DR policy remains the same as respective platform type (discovery and sync) ports

documented in the earlier sections, depending on source and/or target platform type selected for the

policy and the type of the policy. Additionally, for successful email alerts, the below ports need to be

opened from the SWIFT server to the target email server for all configured email accounts where alerts

are configured.

Port Number

(Default)

Direction Can it be changed? Purpose

TCP/587 or custom

SMTP port used by

the target email

server.

SWIFT to

remote Email

server

Yes (If non-default port

used, then specify it in the

SWIFT options file for

email server options)

Send DR email alerts

using local Linux email

client

SWIFT uses local Linux email client APIs to relay email alert messages to the configured email accounts

for DR policy alerts. If your environment uses non-standard or custom SMTP port, then you should

whitelist that port instead of above port. Make sure to specify the custom SMTP port in the SWIFT

options file too under the below options, so SWIFT can use that for relaying email alerts for policies.

(The SWIFT options file is located on the SWIFT server at: /opt/swift/data/options).

dev_swiftAlertOptions_emailAlertOptions_emailServerUrl=smtp://127.0.0.1:587

dev_swiftAlertOptions_emailAlertOptions_localEmailServer=smtp://127.0.0.1:587

Note: It is important you uncomment the line (by removing # at the start of the line) for set options in

the options file, and then restart SWIFT service for the newly set options to take effect.

8 | P a g e

Doing SWIFT install or upgrade
Fresh install
Once you have identified the host for SWIFT install, the next step is a breeze. Just run the installer for

the SWIFT version that you have downloaded. You will be given a EULA prompt, accept it with ‘yes’

and then accept all defaults for subsequent prompts.

Verifying archive integrity... 100% All good.

Uncompressing RackWare SWIFT Package 100%

Installation log file: /var/log/swift/installer.log

You must accept the terms of the license agreement to install and use this software.

END-USER LICENSE AGREEMENT FOR RACKWARE.

IMPORTANT PLEASE READ THE TERMS AND CONDITIONS OF THIS LICENSE

AGREEMENT

CAREFULLY BEFORE INSTALLING OR USING THIS SOFTWARE:

RackWare’s End-User License Agreement (“EULA”) is a legal agreement between

you (either an individual or a single entity) and RackWare, Inc. (“RACKWARE”)

for the RackWare software product identified above which may include

associated software components, media, printed materials, and “online” or

electronic documentation ("SOFTWARE PRODUCT"). By installing, copying, or

otherwise using the SOFTWARE PRODUCT, you agree to be bound by the terms of

this EULA. This license agreement represents the entire agreement concerning

the program between you and RackWare, (referred to as “licenser”), and it

supersedes any prior proposal, representation, or understanding between the

parties. If you do not agree to the terms of this EULA, do not install or use

the SOFTWARE PRODUCT.

The SOFTWARE PRODUCT is protected by copyright laws and international

copyright treaties, as well as other intellectual property laws and treaties.

The SOFTWARE PRODUCT is licensed, not sold.

1. GRANT OF LICENSE.

Rackware grants you, subject to the terms and conditions of this EULA, a

limited, non-exclusive, non-assignable license to the SOFTWARE PRODUCT as

follows:

(a) Installation and Use.

 RackWare grants you the right to install and use copies of the

 SOFTWARE PRODUCT on computers running a validly licensed copy of the

 operating system for which the SOFTWARE PRODUCT was designed.

(b) Backup Copies.

 You may also make copies of the SOFTWARE PRODUCT as may be necessary for

 backup and archival purposes.

9 | P a g e

2. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.

(a) Maintenance of Copyright Notices.

 You must not remove or alter any copyright notices on any and all copies

 of the SOFTWARE PRODUCT.

(b) Distribution.

 You may not distribute copies of the SOFTWARE PRODUCT to third parties.

(c) Prohibition on Reverse Engineering, Decompilation, and Disassembly.

 You may not attempt to reverse engineer, decompile, or disassemble all or

 any portion of the SOFTWARE PRODUCT, except and only to the extent that such

 activity is expressly permitted by applicable law notwithstanding this

 limitation.

(d) Rental.

 You may not rent, lease, or lend the SOFTWARE PRODUCT.

(e) Support Services.

 RackWare may provide you with support services related to the

 SOFTWARE PRODUCT (“Support Services”). Any supplemental software code

 provided to you as part of the Support Services shall be considered part of

 the SOFTWARE PRODUCT and subject to the terms and conditions of this EULA.

(f) Compliance with Applicable Laws.

 You must comply with all applicable laws regarding use of the SOFTWARE

 PRODUCT.

3. TERMINATION

Without prejudice to any other rights, RackWare may terminate this EULA if you

fail to comply with the terms and conditions of this EULA. In such event, you

must destroy all copies of the SOFTWARE PRODUCT in your possession.

4. COPYRIGHT

All title, including but not limited to copyrights and other intellectual

property rights, in and to the SOFTWARE PRODUCT and any copies thereof are

owned by RackWare or its suppliers. All title and intellectual property

rights in and to the content which may be accessed through use of the SOFTWARE

PRODUCT is the property of the respective content owner and may be protected

by applicable copyright or other intellectual property laws and treaties. This

EULA grants you no rights to use such content. All rights not expressly

granted are reserved by RackWare.

5. NO WARRANTIES

RackWare expressly disclaims any warranty for the SOFTWARE PRODUCT. The

SOFTWARE PRODUCT is provided ‘As Is’ without any express or implied warranty

of any kind, including but not limited to any warranties of merchantability,

noninfringement, or fitness for a particular purpose. RackWare does not

warrant or assume responsibility for the accuracy or completeness of any

information, text, graphics, links or other items contained within the

SOFTWARE PRODUCT. RackWare makes no warranties respecting any harm that may

10 | P a g e

be caused by the transmission of a computer virus, worm, time bomb, logic

bomb, or other such computer program. RackWare further expressly disclaims

any warranty or representation to Authorized Users or to any third party.

6. LIMITATION OF LIABILITY

In no event shall RackWare be liable for any damages (including, without

limitation, lost profits, business interruption, or lost information) rising

out of ‘Authorized Users’ use of or inability to use the SOFTWARE PRODUCT,

even if RackWare has been advised of the possibility of such damages. In no

event will RackWare be liable for loss of data or for indirect, punitive,

special, incidental, consequential (including lost profit), or other damages

based in contract, tort or otherwise. RackWare shall have no liability with

respect to the content of the SOFTWARE PRODUCT or any part thereof, including

but not limited to errors or omissions contained therein, libel, infringements

of rights of publicity, privacy, trademark rights, business interruption,

personal injury, loss of privacy, moral rights or the disclosure of

confidential information.

7. MISCELLANEOUS

In the event of a legal dispute arising out of or related to this Agreement,

the prevailing party in any litigation will be entitled to recover its

attorney fees and court costs from the non-prevailing party. If any

installation or use of the SOFTWARE PRODUCT requires a click-through agreement

in recognition of any third party rights related to the SOFTWARE PRODUCT, you

agree that any provisions of such click-through agreement shall be binding

upon you in addition to the terms of this EULA or any other agreement you have

with RackWare.

Please type ‘yes’ then [enter] to accept the terms of the license agreement,

or simply press [enter] to abort installation.

Enter your acceptance: yes

Beginning installation ...

Extracting new SWIFT install files ...

…

…

One specific input you may want to customize for your environments is the NTP server name or IP.

SWIFT needs an NTP server name or IP during its operation. By default, SWIFT would configure the

‘pool.ntp.org’ server, but you can change it to something local you use in your environment.

11 | P a g e

Configuring NTP ...

Configured NTP server for the SWIFT: pool.ntp.org

 (System level NTP settings are not changed.)

Do you want to configure a different NTP SERVER for the SWIFT? (Type: y/yes/n/no) [no]: yes

Enter the NTP server name or IP [pool.ntp.org]: myntp.local

Configuring the NTP server for the SWIFT use: myntp.local

(System level NTP settings are not changed.)

Configuring all SWIFT components and services ...

Installing dependency packages ...

…

…

You will also be prompted to set a password for the ‘admin’ user at the end of the install, which is a

built-in superuser for SWIFT. You can skip this step and set up this password later by running the below

command over SSH to the SWIFT server. The installer will also print the same command if you skip

setting the password during the fresh install. Note that you will need this user’s password set to log in

to the SWIFT dashboard and create other users and groups initially.

sudo swiftcli user modify admin –password <password>

If a restart is needed, the installer will prompt that in the end. If prompted, it will be highly recommended

to complete the restart of the SWIFT server immediately for the correct functioning of all the SWIFT

services.

Upgrade
For upgrade, steps remain the same as a fresh installation.

You may see an error in an upgrade if any of the SWIFT services are running, and you run the new

installer package.

Verifying archive integrity... 100% All good.

Uncompressing RackWare SWIFT Package 100%

Installation log file: /var/log/swift/installer.log

ERROR: The existing SWIFT processes are still running. Please stop those with the ‘swiftadm stop

all’ command, and re-run this installer.

Make sure no SWIFT operation is running before stopping any of its processes.

Aborting installation.

--

12 | P a g e

Installation log file: /var/log/swift/installer.log

--

Stop the services with ‘swiftadm stop all’ as the prompt mentions, and then re-run the installer package.

Make sure none of the SWIFT operations are running before you stop services. The ongoing operations

resume after the SWIFT starts back, but it would be recommended to do an upgrade only when the

SWIFT server is idle.

Once the installer runs to an end, it will complete the upgrade, and the SWIFT services would be

automatically started back. If a restart is needed for the upgrade, the installer will prompt that in the end.

If prompted, it will be highly recommended to complete the restart of the SWIFT server for the correct

functioning of the upgraded SWIFT services.

Creating cluster credentials for SWIFT use
Below sections highlight steps for creating cluster credentials for use with the SWIFT. Note that steps

will change for every cloud and non-cloud installs.

The generated credentials are something you would use while configuring cluster details in the SWIFT

or using object-storage for the cloud with SWIFT. The same credentials will also be used for the

container image registry discover and administration for the respective clouds or platform types.

Adding local Kubernetes cluster service-account for SWIFT use
Before you can add your local (non-cloud) Kubernetes cluster to SWIFT and start managing it, you will

need to have a cluster service account created with the necessary permissions.

Create a YAML for the new service account:

$ vi swift-admin-sa.yaml

apiVersion: v1

kind: ServiceAccount

metadata:

 name: swift-admin

 namespace: kube-system

Apply the YAML file

$ kubectl apply -f swift-admin-sa.yaml

13 | P a g e

Next, add the ‘cluster-admin’ role to the newly created account.

$ vi swift-admin-roles.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: swift-admin

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cluster-admin

subjects:

- kind: ServiceAccount

 name: swift-admin

 namespace: kube-system

apiVersion: v1

kind: Secret

metadata:

 name: swift-admin

 namespace: kube-system

 annotations:

 kubernetes.io/service-account.name: swift-admin

type: kubernetes.io/service-account-token

Apply the YAML file

$ kubectl apply -f swift-admin-roles.yaml

To get the service-account token, you can use a command as below. The command would print the

‘token’ key. You will use this output token later while adding the cluster to the SWIFT.

$ kubectl -n kube-system describe secret $(kubectl -n kube-system get secret | grep "swift-admin" |

awk '{print $1}')

Adding Oracle Cloud Infrastructure (OCI) user for SWIFT use
This section highlights the steps to create an account under your OCI cloud tenancy, which you can use

later to configure the cluster details under your installed SWIFT. The same credentials can also be used

later to discover an Oracle Cloud Infrastructure Container Registry (OCIR) instance or add an OCI cloud

object storage under your SWIFT.

Login to OCI console. Select the ‘Identity & Security’ submenu from the top left menu and then select

‘Groups’ option. We will create a Group, a Policy, and then finally a User.

https://login.oci.oraclecloud.com/changeTenant

14 | P a g e

Press the ‘Create Group’ option.

In the new ‘Create Group’ wizard, set appropriate name and description. In this example case, we will

name it ‘RackWare-SWIFT.’

15 | P a g e

Once the group is created, we are ready for the next step of creating a Policy.

From the Identity menu, select ‘Policies’ submenu. Select compartment where OKE clusters or OCIR

registries are located. Then press the ‘Create Policy’ button.

16 | P a g e

For the new ‘Create Policy’ wizard, give policy a name and description. Then enable ‘Show manual

editor’ slider. It will show you a textbox to edit policy rules that you can use to enter rules shown

below.

In the policy editor textbox for rules, you will enter below rules. Note that some rules are optional

depending on use-cases needed with the SWIFT. Replace ‘{group name}’ and ‘{compartment name}’

in below rules with user group created earlier and compartment name where OKE clusters are located

respectively.

Instance access control rules - Mandatory

Allow group {group name} to manage instance-family in compartment {compartment name}

Allow group {group name} to read app-catalog-listing in compartment {compartment name}

Allow group {group name} to use volume-family in compartment {compartment name}

Allow group {group name} to use virtual-network-family in compartment {compartment name}

17 | P a g e

Storage access control for snapshots rules - Mandatory

Allow group {group name} to manage volume-family in compartment {compartment name}

Allow group {group name} to use instance-family in compartment {compartment name}

Sync to/from OKE cluster rules – Mandatory

Allow group {group name} to read all-artifacts in compartment {compartment name}

Allow group {group name} to manage cluster in compartment {compartment name}

Allow group {group name} to manage instance-family in compartment {compartment name}

Allow group {group name} to manage volume-family in compartment {compartment name}

Allow group {group name} to use virtual-network-family in compartment {compartment name}

Allow group {group name} to manage objects in compartment {compartment name}

Allow group {group name} to inspect instance-family in tenancy

Backup to Object storage control rules – Only needed if you are planning to backup to OCI Object

Storage with SWIFT

Allow group {group name} to manage volume-family in compartment {compartment name}

Allow group {group name} to manage buckets in compartment {compartment name}

Allow group {group name} to manage objects in compartment {compartment name}

Allow group {group name} to manage virtual-network-family in compartment {compartment name}

OKE Dynamic cluster provisioning support rules – Only needed if you are planning to dynamically

provision DR OKE clusters with SWIFT

Allow group {group name} to manage compartments in tenancy

Allow group {group name} to manage vcns in compartment {compartment name}

Allow group {group name} to manage subnets in compartment {compartment name}

Allow group {group name} to use vnics in compartment {compartment name}

Allow group {group name} to use private-ips in compartment {compartment name}

Allow group {group name} to manage public-ips in compartment {compartment name}

Allow group {group name} to use cluster-node-pools in compartment {compartment name}

Allow group {group name} to inspect instance-family in tenancy

Allow group {group name} to manage cluster-family in compartment {compartment name}

Oracle Container Registry (OCIR) sync rules – Only needed if you are planning to sync to/from

Oracle OCI Container Registries (OCIR) with SWIFT

Allow group {group name} to manage volume-family in compartment {compartment name}

Allow group {group name} to manage buckets in compartment {compartment name}

Allow group {group name} to manage objects in compartment {compartment name}

Allow group {group name} to manage virtual-network-family in compartment {compartment name}

Once you enter required rules above, create the policy.

18 | P a g e

Let’s now create a User and add it to the Group created earlier, where we also applied access policy

now.

From the Identity menu, select the Users submenu.

Select the ‘Create User’ option. Then on new user creation wizard, set name and description for the

User. We will use ‘RackWare-SWIFT’ as a name in the example case.

19 | P a g e

Once the user is created, select ‘Add User to Group’ option from the Groups tab.

Add it to the ‘RackWare-SWIFT’ group created earlier in the flow, where new policy is also applied.

Adding user to this group would restrict this user’s access to OCI with the earlier applied restrictive

policy.

20 | P a g e

Once the user is added to the group, you will see the new group listed in the Groups tab.

Now, let’s generate an API key for the user that later you will use with SWIFT for OKE cluster

discovery, OCIR syncs, OCI object storage addition to SWIFT, or OKE dynamic provisioning

configuration in SWIFT.

Click on the ‘API Keys’ tab under user configuration page.

21 | P a g e

Select ‘Add API Key’ button. On the new key wizard, you can either upload keypair or let OCI

generate one for you. Make sure to download both keys if you let OCI generate keypair for you, as you

can’t later download these keys later.

Note the generate key’s fingerprint too, as you will later need it for various OKE/OCIR specific

configurations in SWIFT, including OKE/OCIR cluster discovery.

22 | P a g e

That’s it! You can now use the generated API key and fingerprint along with other details like

compartment id and user id with SWIFT to discover an OKE cluster or sync OCIR registries under the

OCI account. The new API key will have same access that access policy we created and applied above

for the new user allows.

Adding Google GCP service-account for SWIFT use
This section highlights the steps to create an account under your Google cloud project, which you can

use later to configure the cluster details under your installed SWIFT. The same credentials can also be

used later to discover a Google Container Registry (GCR) instance or add a GCP cloud object storage

under your SWIFT.

Login to Google cloud console, and select the required project. Note that you will have to repeat these

steps for every project, where you have a cluster located and which you want to manage under the

SWIFT.

https://console.cloud.google.com/

23 | P a g e

From your menu options, click on the ‘APIs & Services’ option and then on the ‘Dashboard’ submenu.

Click on the ‘Enable APIs and Services’ option.

24 | P a g e

Search For ‘Kubernetes Engine API’ option.

Click on the ‘Enable’ button.

From your menu options, click on the ‘IAM & Admin’ option and then on the ‘Service Accounts’

submenu.

25 | P a g e

Click on the ‘Create Service Account’ option.

26 | P a g e

Fill out the necessary account name and description details.

After the account is created, select roles to add for the new account, as shown below. You need to add

Kubernetes engine developer, Kubernetes Engine admin, Compute Instance Admin (beta) and Compute

Instance Admin (v1).

27 | P a g e

Also add the ‘Storage Admin’ role to the service account if you plan to use this account with the

SWIFT for adding a GCP object storage in the SWIFT. If you do not plan to use GCP object storge

with SWIFT for backups, then this role addition is an optional step.

28 | P a g e

Once the required roles are added, press the ‘Continue’ button.

29 | P a g e

Add any user roles for the account. Adding any user roles is optional for this account. Press the ‘Done’

button to complete the creation of the user.

30 | P a g e

Now the new account will appear on the service accounts page. Filter, if necessary, to find the newly

created user and generate a key for it from the account menu.

Select the JSON format for the key, and then download the JSON key file.

31 | P a g e

Store the downloaded JSON file securely, as it will contain API private key and a few other sensitive

details. Later, when you are ready to add your cluster to the SWIFT, you will need to upload this

downloaded JSON file.

Additionally, you will also need to specify your cloud cluster details to the SWIFT while configuring

the GKE cluster under SWIFT. You will need a few necessary details, like the cluster name, the project

under which this cluster is created, etc. You can find those on the cluster details page, as shown below.

32 | P a g e

Adding Amazon AWS user for SWIFT use
This section highlights the steps to create an account under your Amazon AWS cloud, which you can

use later to configure the EKS cluster details or discover Elastic Container Registry (ECR) instance, or

AWS cloud object storage under your installed SWIFT.

Login to AWS cloud console, and then from the ‘Services’ menu, select the ‘IAM’ service.

Traverse to the ‘Users’ menu on the left and then click on the ‘Add User’ button.

Fill up the user name and then select the ‘Programmatic Access’ for the access-type.

https://aws.amazon.com/eks/

33 | P a g e

On the next page, select necessary admin groups where this new user would need to be added. In this

example case below, the ‘rw-admin’ group allows access to below essential policies, which in turn

enable the admin access to EKS clusters.

- AmazonEBSCSIDriverPolicy

- AmazonEC2ContainerRegistryFullAccess

- AmazonEKS_CNI_Policy

- AmazonEKSWorkerNodePolicy

- AmazonEKSVPCResourceController

- AmazonEKSClusterPolicy

34 | P a g e

 On the next page, select any tags you want to set for the new user.

Next, then review all settings and create the user.

35 | P a g e

Next, click on the generated user from the ‘Users’ menu. You will create an access key for it.

36 | P a g e

Traverse to the ‘Security Credentials’ tab under user details. You would use the ‘Create access key’

button to generate a new access key.

Note the generated access key and store it securely. You will need it later while configuring your EKS

cluster details under the SWIFT.

37 | P a g e

Note:

Once you create a new user and set its credentials/access-key, you will also need to whitelist this user

for access to the Kubernetes (EKS) service instance, which is managed with the SWIFT. To do that, you

have to edit the ConfigMap named ‘aws-auth,’ which is located under the ‘kube-system’ namespace on

your EKS instance, and then add the ARN of the newly created user there in the below format:

apiVersion: v1

data:

 mapRoles: |

 - groups:

 - system:bootstrappers

 - system:nodes

 rolearn: arn:aws:iam::225015082077:role/eksctl-EKSCluster1-nodegroup-ng-a-NodeInstanceRole-

1QTOCK6OPERZS

 username: system:node:{{EC2PrivateDNSName}}

 mapUsers: |

 - userarn: arn:aws:iam::225015082077:user/swift-admin

 username: swift-admin

 groups:

 - system:masters

kind: ConfigMap

metadata:

 name: aws-auth

 namespace: kube-system

You will need to do the ConfigMap edit step above using the existing cluster-creator user’s credentials.

You can use the kubectl utility (along with cluster creator credentials) to do the edit. The detailed steps

can be found in this KB.

https://aws.amazon.com/premiumsupport/knowledge-center/eks-api-server-unauthorized-error/

38 | P a g e

Note that you will have to repeat this whitelisting step for every EKS instance, which you want the

SWIFT to manage with the newly created user. If you skip this step, your newly created user will not be

able to access the corresponding EKS service instance.

Adding Azure AAD application for SWIFT use
This section highlights the steps to create an AAD application under your Azure cloud. You will later

use the AAD application credentials to configure the AKS cluster details under your installed SWIFT.

The same credentials could also be used for Azure Container Registry (ACR) or Azure Object Storage

discovery in SWIFT.

Log in to the Azure cloud console, and from menus on the left, select the ‘Azure Active Directory’ menu

option.

Click on the ‘App Registrations’ menu and then the ‘New Registration’ option.

https://portal.azure.com/

39 | P a g e

Create a new app registration and give it a name.

40 | P a g e

Once the AAD application is created, note the app-id and directory-id. You will need these details later

while configuring your AKS clusters under the SWIFT.

For the new application, click on the ‘API permissions’ menu on the left, and then select the ‘Add Permission’
and the ’Microsoft Graph’ API permissions.

Under the ‘Request API permissions’ section, select ‘Delegated permissions’ and check all Read

permissions as shown in the below screenshot, and then click on the ‘Add permission’ button to finish

adding those.

41 | P a g e

Select ‘Add a permission’ again and this time select ‘Azure Storage’ category.

42 | P a g e

Select permissions shown below and then add it.

43 | P a g e

Once the permissions are added, select the admin consent grant option, and then grant the permissions.

Next, click on the ‘Certificates & secrets’ menu, and then select the ‘New client secret’ option.

44 | P a g e

Note the generated secret key and store it safely. The key will not be shown later for security reasons.

Also, you will need this key later while configuring your AKS cluster or ACR registry or Azure object

storage details under the SWIFT.

45 | P a g e

For the new application, from the ‘Authentication’ menu, enable public client flows. Make sure to press the save
button to save the changes.

Grant subscription ‘Contributor’ role to the new application. To do that, click on the ‘Subscriptions’

menu and select your subscription where you have your AKS clusters provisioned.

46 | P a g e

While on the above page, you may also want to note down your subscription id, as you will need it later

while configuring your AKS cluster details under the SWIFT.

On add dialog, select the newly created application and the contributor role, and then save it.

47 | P a g e

48 | P a g e

Lastly, you need to assign ‘Storage Blob Data Contributor’ role to the new app or client we created

above at all resource group levels where you have either cloud object storage created or want SWIFT to

use those resource groups for longer term backups. Note that this is optional step if you do not want

SWIFT to use Azure object storage for backups.

Select required resource group from ‘Resource Groups’ menu.

Select the Resource Group and then ‘Access Control (IAM)’ properties for it. Then select the ‘Add’

button and then ‘Add role assignment’ option.

Select the ‘Storage Blob Data Contributor’ role.

49 | P a g e

Select the app or client you created in earlier steps. For this example case, that is ‘swift-admin’ app.

Press the ‘Next’ button and add permissions after a review. You will see newly added permissions under

IAM menu for the resource group.

50 | P a g e

Please now note the below details for the account and the newly created AAD application, which you

will need later while configuring your AKS clusters, object storages, or container image registries under

the SWIFT:

- Subscription id

- Tenant id (Default directory id)

- Newly created app name and id (client id)

- Newly created app secret (client secret)

Adding IBM cloud user for SWIFT use
This section highlights the steps to create a user account under your IBM cloud. You will later use these

user credentials to configure the IBM Kubernetes Service (IKS) as well as IBM OpenShift cluster details

under your installed SWIFT. The same credentials could also be used later to discover an IBM Cloud

Container Registry or an object storage under SWIFT.

Log in to the IBM cloud console, and from the top section, select the ‘Manage’ and then the ‘Access

(IAM)’ menu option.

https://cloud.ibm.com/

51 | P a g e

Click on the ‘API keys’ option. Make sure the ‘My IBM Cloud API keys’ option is selected.

To create an API key, select the ‘Create an IBM Cloud API Key’ button on the right side of the webpage.

Fill in the name of the key file name and relevant description, and then click on the ‘Create’ button.

52 | P a g e

Download and save the generated API key safely. This key will be needed later while adding an IBM

IKS or OpenShift cluster to the SWIFT.

Note: The generated IBM API key inherits all the privileges of the logged in user. If you’re logged in

with an ‘owner’ role user and then generated a key, then the generated API key will have full owner

rights and if that is the case then you can skip the next set of steps.

However, if you’re logged in as a regular user and created a key, then you need to assign some specific

privileges for the user that are mentioned in the next section. Without those privileges for the current

user, the generated key will not work correctly with your SWIFT server.

Set permissions of the IBM cloud user for SWIFT usage

Select the ‘Users’ option from the left side menu and then select the current user that generated the key.

Additional information can be found here.

https://cloud.ibm.com/docs/containers?topic=containers-access-creds#infra_access

53 | P a g e

Add the Classic Infrastructure permissions

To assign the classic infrastructure permissions to the user, select the ‘Classic Infrastructure’ tab.

Additional information can be found here.

There are 2 options for assigning classic infrastructure access:

1. Add super user access

2. Add individual permissions as below:

https://cloud.ibm.com/docs/containers?topic=containers-access_reference#infra

54 | P a g e

Under the ‘Permissions’ tab, expand and check the following permissions:

Account:

• Add/Upgrade Storage (Storage Layer)

Devices:

• Edit Hostname/Domain

• Manage Port Control

Network:

• Add IP Addresses

• Manage Network Subnet Routes

• Add Compute with Public Network Port

Services:

• Manage DNS

• Manage Certificates (SSL)

• View Certificates (SSL)

• Storage Manage

After selecting the above permissions, click on the ‘Apply’ button.

To add/check worker node specific permissions, go to the ‘Devices’ tab and make sure the following

permissions are set.

55 | P a g e

Add VPC Infrastructure permissions

If you have a VPC cluster then the user needs to have the ‘Administrator’ platform access. To assign the

access, click on ‘Assign access’ button under the ‘Access policies’ tab.

Search for ‘VPC Infrastructure Services’ and select the related drop-down option. Select the

‘Administrator’ role and click on the ‘Add’ button below.

Click on the ‘Assign’ button on the right to assign the selected role.

56 | P a g e

Now you can add your IBM IKS or OpenShift cluster to SWIFT by using the username and generated

API key.

Adding OpenShift cluster service-account for SWIFT use
Before you can add your local or cloud based OpenShift cluster to SWIFT and start managing it, you

will need to have a cluster service account created with the necessary permissions.

Create a YAML for the new service account:

$ vi swift-admin-sa.yaml

apiVersion: v1

kind: ServiceAccount

metadata:

 name: swift-admin

 namespace: kube-system

Apply the YAML file

$ oc apply -f swift-admin-sa.yaml

57 | P a g e

Next, add the ‘cluster-admin’ role to the newly created account.

$ vi swift-admin-roles.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: swift-admin

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cluster-admin

subjects:

 - kind: ServiceAccount

 name: swift-admin

 namespace: kube-system

Apply the YAML file

$ oc apply -f swift-admin-roles.yaml

To get the service-account token, you can use a command as below. The command would print the

‘token’ key. You will use this output token later while adding the cluster to the SWIFT.

$ oc -n kube-system describe secret $(oc -n kube-system get secret | grep "swift-admin-token" | awk

'{print $1}')

